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We present results of Monte Carlo simulations of critical quenches in Ising models with long range inter-
actions indicating that linear theories of continuous ordering such as Cahn-Hilliard-Cook theory break down
first at high wave numbers or small length scales. We connect this breakdown to the formation of isolated
domains that resemble the stable phases. These domains grow and coalesce, causing deviations from the linear
theory to appear at smaller wave numbers. When the domains @owm) spins percolate the failure of the
linear theory occurs on all length scales and the system has chosen (tievup global magnetization state.
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[. INTRODUCTION cerned with the limits of the early time regime at which the
linear theory first fails to describe the evolution of the Fou-
Phase ordering kinetics occurs, for example, when a sysier modes.
tem undergoes a temperature quench from a disordered state The linear theory for spinodal decomposition was intro-
above the critical temperature to a final state inside the coduced in 1959 by Cahn and Hilliafd] and later extended by
existence curvgl]. If the order parameter is conserved, suchCook to include thermal noisgs]. They predicted that at
as in binary alloy phase separation, this process is known asarly times the composition fluctuations will grow exponen-
spinodal decompositioSD). If the order parameter is not tially at long wavelengths while the short wavelength modes
conserved and not coupled to a conserved quantity, which ieelax to “false” equilibrium values. In 1984 Binder pre-
the case when a system has undergone an order-disordggnted a Ginzburg-like consistency argument which stated
transition, this process is known as continuous orderinghat the linearized approximation is consistent for short
(CO). Both these processes are of technological interest ttimes, but becomes inconsistent for time greater than some
the materials science and metallurgy community; for ex-critical timet, which scales with the range of interactitd.
ample, alloys become embrittled when phase separation od+is is discussed further below. Although experiments
curs[2,3]. On a fundamental level, the phase ordering pro{10,11 and simulationg12] agree with the linear Cahn-
cess serves as an important test of our understanding dfilliard-Cook (CHC) theory for certain parameter regimes,
nonequilibrium dynamics. The goal of the work presentedthere are experimental indications that the linear predictions
here is to describe the structures which form at early times iffiail first on short length scalegl0]. As we reported in a
the processes and understand how they affect the evolutigerevious Lettef13], using Ising model simulations we have
of the system. confirmed the observation that the linear theory fails first at
The phase ordering process can be divided into severahort length scales. In addition we also presented evidence
time regimes. At early times when the composition fluctua-for the formation of dense domains whose size corresponds
tions are small, the dynamics are believed to be linear antb length scales at which the linear theory has failed. We also
characterized by exponential growth of composition fluctua-showed that the linear theory fails on all length scales when
tions[4,5]. At late times, the system effectively consists of the domains coalesce. In the current paper we show in detail
domains of the different phases separated by sharp intehow the linear theory fails to fit the simulation data at small
faces. In this late stage regime, the domain growth is detedength scales and present a generalized linear theory which,
mined by the dynamics of the interfaces and characterized bthough it better describes the evolution of the order param-
dynamic scaling; that is, the domain morphology is invarianteter, still fails in the same manner as the CHC theory. Fi-
and can be described by a characteristic length scale thaally, we study the structures of the domains which form on
grows with time[6]. Aspects of both the early stage and thethese length scales and discuss how they cause the failure of
late stage seem to be well described theoretically: howevethe linear theory.
attempts at a crossover theory have met with little success. The remainder of this paper is structured as follows. In
Perturbative expansions fail at about the same time as th®ec. Il we review the linearized theory and attempts to pre-
linear theory{6] and other attempts such as those by Langerdict the time at which it fails. In Sec. Ill the linear theory
Bar-on, and Miller[7] as well as Billotet and Bindef8] analysis of the simulation data is presented. The data are
involve uncontrolled approximations. This paper is con-analyzed using both the standard CHC theory and a general-
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56 MORPHOLOGY OF EARLY STAGE PHASE ORDERING 5161
ized linear theory. Though the generalized theory gives a ¢(k,t)=¢0(k)exp{—M(R2k2+ 2¢)t}, (2.6)
better fit to the data using the same number of free param-

eters, evidence is presented which suggests that both theories

fail on short length scales first. In Sec. IV a cluster mappingyhich is simply the solution to the Cahn-Hilliard equation as
is used to identify growing domains of Udown) magneti-  iginally presented in 1958t]. Fore>0 Eq.(2.6) indicates
zation. We argue that these regions, which are of a sizg,5; any perturbation will decay; however, if the system is
which is between an interaction range and a Correlat'o'l]uenched to below the critical temperature, theis nega-
length, are Iinl_<ed to the failure of linear theory on Shorttive and, for small wave vectorgi(k.t) will gr,ow. We can
length scales first. take the inverse Fourier transform of E8.6) to recover the
real space configuration generated by this growth. In two
dimensions we obtain

In this section we describe the linearized equation of mo-
tion for the order parametes(x,t) and structure factor
S(k,t) for the case of the nonconserved order parameter and o X
present a consistency check to predict the time at which the d(x,0)= MR%t ex;{ —2eMt— AMtRZ)’ 2.7
linear theory is no longer a good approximation. Following
Cahn and Hilliard and CooKk1,4,5, we begin with the

Langevin equatior{14]. When the order parameter is not where we have assumed thag(k) is a constant. This cor-

II. REVIEW OF LINEAR THEORY

2

conserved its equation of motion is responds to an initial spatial configuration which i$ func-
tion at the origin. Assuming that is negative the argument
P SF . : me
— d(X,)=—M —+ 7(X,t). (2.0 of the exponential can be rewritten _aE8|s|M -
at o — (x/R)2]/4Mt. This suggests that at early times a growing

domain has two growth fronts: a weak front which advances
linearly with time, and a more robust front which advances
like a random walk.

Equation(2.6) is the homogeneous solution of E®.5

- - =, - -, , and so it does not include the noise tesnin 1970, Cook
(7(x,1))=0, (n(x,)7(x",t"))=MkgT S(x—X )5(t_t2)2’ obtained a form for the structure factor which included the

(2.2 noise[5]. To find the full solution to the CHC theory, we

whereT is the temperature arkl, is Boltzmann’s constant. IMpose the causality condition and use the retarded Green
F is taken as the Ginzburg-Land4GL) free energy with ~ function.
zero magnetic field.

For the time scales considered in this work, the mobility
can be assumed to depend only on the temperatris.
uncorrelated Gaussian noise which satisfies the conditions

N N N N N ~ ~ t -
Fl¢l= f dX{R’[V ¢(x,1)]*+ 8 p*(x,1) + p*(x,1)}. b(k,t) = go(K)exp(— M{R?k?+2&}t) + fodt’ n(k,t")
(2.3
x exp{ — M(R%k?+2¢)(t—t")}. (2.8

Here, R? is the second moment of the interaction potential,
which can be taken as a measure of the interaction range, and
the _paramete.@:(T—Tc)/Tc is the reduced temperature. If gy _using the definition of the structure factoB(k)
we insert Eq(2.3) into Eq.(2.1) we get =(|¢(k)|?) along with the solution for the order parameter

in Eq. (2.8 we can find the equation of motion for the struc-

J - -
2t P D=—M(~ R2V2¢p+2e p+4¢3) + n(x,t). ture factorS(k,t).
(2.9
This nonlinear equation hasAnot been solved analytically; 9 S(k,t)=2<’5(k,t) i;ﬁ(k,t)’>,
however, if we assume thas(x,t) is small so that we can at Jt

ignore theg® term we obtain the linear Cahn-Hilliard-Cook
equation.

& —~ ~ —~
. . ﬁs<|<,t)=2<|¢>(k,t)[—|\/|(F<2k2+28)¢>(I<,t)+ 7(kH)])
- Pxt=— M{RZ[V2(x,1)]+2& (X, )} + (X,1),

=2(MRZ2+2)(| B(k,D[2) +2(| bk, D 7K, D).
9~ - - .
— HKD=—MRH+28) (k) +7(kD), (25 @9
where the second equation in H.5) is the spatial Fourier  The first term in the last line of E¢2.9) is the equation of

transform of the first. The solution to the homogeneous equanation for the structure factor derived by Cahn and Hilliard
tion [ n(x,t)=0] is [4]. Using Eq.(2.8), the second term yields
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If linear theory were exact, then the equilibrium structure

factor would beS, (k). However, sincef S(k,t)dk is a con-

served quantitythe system volume is a constarexponen-

tial growth cannot go on indefinitely. For quenches to below

T., the nonlinear terms in Eq2.4) will start to become

1 important. At some timé. the growth of structure factor at
small wave vectors will be limited when the linear theory

Relaxation up will fail to accurately describe the system. Note that if the

0 system was above the critical poil&l;,(IZ) would always be

s positive and all wave vectors would relax exponentially to
2 -
/ k their equilibrium value which is given b$,(k). Thus, with

-1
ALY Relaxation down

k2 Unstable growth the appropriate change of sign, we recover the Ornstein-
Zernicke form of the structure factor for a system above the
critical point.
Now that the properties of the linear theory have been
FIG. 1. Dynamic domains for CHC theory. The modes belpw discussed, we can consider when it is valid. As we have said,
grow exponentially while those aboke relax. there exists a timé. at which nonlinear terms become im-
portant and the linear theory must fail to describe the evolu-

- _ t _ tion of the structure factor. Before summarizing the argu-
<|¢(k,t)77(k,t)|>:f dt’ (7(k,t") 7(k,t) yexp{ M (R?k? ments of Binde9] which predict this breakdown time, we
0 first need to review some scaling considerations.
+2e)(t—t')} Length scales smaller than the interaction raRgghould

have very little significance for CHC theory, so we should be
able to rescale all lengths with respect to the interaction
range,¢(X) —a¢(x/R), however, we do not know the rela-
tion betweena andR. Since the Langevin equation relates
X exp{M(R?k?+2¢)(t—t')} the time evolution of¢ to the noise fieldy, we can use the
_ scaling of » to uncover the scaling ap.
Mk, T. 2.19 For Gaussian random noise we have the relation

The full equation of motion for the structure factor becomes

t
:Mkaf dt’ s(t—t)
0

(n(X,D) (X)) =Mk TS(X—X)S(t—t"). (2.14

J
— S(k,t)= —2M[R%k?—2|¢|]1S(k,t) + 2MKk,T,
at k1) [ l2l18tk.t) ° The scaling property of thé function implies a scaling re-

(211 |ation for the noise,

and its solution is

1 - - 1 - -
S(k,t) =[S(k,0)— S, (k) Jexp{ — D(K)t} + S, (K), = S(XIR)= 5(x):>ﬁﬂ§ n(xIR,t)=n(x,1). (2.19
2k, T In linear theory we can assume that the fiéidcales in the

— — -1
Suk)= R%k%-2[g]’ DU=MIS,()]"" (212 Game way as the noise. This is consistent with the unit of

derived from the Ginzburg-Landau free energy given in Eq.
Equations(2.11) and(2.12) describe the CHC theory as pre- (2.3). Assuming that the units of energy have been scaled
sented by Cook in 197(b]. We have explicitly inserted a away, then the integrand in E(.3) must have units of ~¢.
negative sign in front of thes| and so Eq(2.12 describes a  Sincee in Eq. (2.3) is dimensionless, thegh must have di-
system which has been quenched from a temperature abowgensions of. ~%2. When rescaling lengths By we see that
the critical point to a temperature below it. There are severahe field must have the scaling of the noise given in Eq.
features of this result which should be discussed and arg. 15
illustrated in Fig. 1. In this figure the inverse of the CHC  we can now outline a consistency check for linear theory.
form of S,(k) has been plotted agairist. First it should be From Eq.(2.4) the linear theory should describe systems
noted that there is a critical wave vector whe®e(k) undergoing continuous ordering or spinodal decomposition

changes sign. This is given by as long asp(x,t)> ¢(x,t)2 or 1> $(x,1)2. If we take dy(K)
in Eq. (2.6) to be a Gaussian instead of flat as we assumed
R%k2—2|e|=0=k.=y2|¢|/R. (2.13  earlier then we can set the initial amplitude to be small

_ enough so that the linear approximation holds for lalht
For wave vectors below., S,(k) andD(k) will be nega- zero time. Then the argument of the exponential equation
tive; so, for small wave vectors the argument of the expo{2.7) becomes
nential in Eq.(2.12 will be positive and the structure factor
will grow exponentially. For wave vectors abovg, the 8|e|Mt2(MR2+ 2A) — x?

structure factor will relax exponentially towar&]g(IZ). 4t(MR?+2A)

(2.19
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HereA is the square of the inverse width of the initial Gauss-
ian in k space. We see that the fastest growth occurs for

smallx and so this is where the consistency check should fail
first. Inserting the scaling relationship faf given in Eq.

(2.19 into the solution to linear theory, it is possible to get a k
time scale beyond which linear theory is invalid. '_L
0 _exp(ZMstc)~1 _d In(R). (2.1
¢(0)=—pga— =1=te=5,_ IN(R). (2.17)

t. is weakly dependent oR which implies that linear theory
is a good approximation for long range models. It is also
strongly dependent on the distance from the critical point.
This is consistent with the results of Bind@], but Binder's
argument does not indicate that the linear theory will fail on
small length scales first. Note that this is a consistency FIG. 2. This figure shows the geometry of the interaction region
check; the linear theory may still fail at times earlier than theused in this work. The number of spins that a given spin interacts
critical time t, obtained in EQ.(2.17. Another argument with is q=(2R+1)*~1.

based on a supersymmetric representation of the CHC theo%
is given in Ref.[15] and predicts that the linear theory will
fail on small length scales at times shorter thanThis was
confirmed by the simulations done in our previous work
[13]. Finally, Yeung, Gross, and Costdlb6] use mode slav-
ing arguments to calculate the breakdown time for differen

be consistent, the thermodynamic limit should be taken
beforeR is taken to infinity{17]. It was shown by Domb and
Dalton [18] that the inverse critical temperature for this
model scales with the interaction range and that scaling is
piven by

Fourier modes and showed thafk) ~k 2. 1 A
Bcza 1+ ar y (32)

I1l. ANALYSIS OF THE STRUCTURE FACTOR DATA
whereA=3.7 andl’=0.666.

In this section we present two different methods for using g explore the CHC theory thoroughly, systems of differ-
linear theory to analy_ze the structure factor data. The f_ir;;ng ranges and quench depths were investigated. First, all
method we present fits the structure factor to the explicisystems studied in this work start from an initial configura-
form of the CHC theory. For this method we are able totion of a random distribution of spins, which corresponds to
estimate the breakdown time as a function of wave number system in equilibrium at infinite temperature. Systems with
We see that as the wave number increases the breakdowgteraction ranges of 7, 10, and 15 were quenched to an
time gets smaller; thus the linear theory fails first at largejyerse temperature g8=1.5 in units where Boltzmann’s
wave numbers. The second method uses a more generalizggnstant is set equal to unity. Also, systems of range 7 were
linear theory. This method allows us to fit the data moreyyn at inverse temperatures varying betwggn 1.2 to 8
closely for larger wave numbers. It still appears though that- 5 o Note that3=1.0 corresponds to the critical tempera-
the linear theory will fail first at large wave numbers. The y,re for this system in the mean fiel®R{ ) limit. The
last section shows that the generalized theory is also usefhact critical temperature for the finite range systems used
in analyzing equilibrium data. _ _ here differs from the mean field limit by only a few percent

To tes_t the pred|ct|on of the breakdowrj time for the linear4; most[18]. All systems are run on a two dimensional lat-
theory simulations of the long range Ising modeRIM) e of size 51X 512, with open boundary conditions. The
were used. In the LRIM a spin interacts with all of the otherpoyngary conditions are chosen to facilitate the cluster
spins in a set region defined by some rafgen this work  analysis” which is discussed later in this work. A random
the region we chose is the square shown in Fig. 2. As th%pdate scheme was used to evolve the sy$9h For each
range is increased, the strength of the interaction is scaled yt of parameters, 48 independent systems were run for four
1/R? to keep the energy per spin finite7]. For these models onte Carlo stepgMCS). Configurations are saved every
the physics depends only on the dimension of the system anfj3s of 5 MCS. For each of these times, the structure factor
the number of spins in the interaction range, which we willfo; each independent run was calculated. These are then av-

call g. _ _ o _ o _ eraged over the 48 runs and a circular average is calculated
Once the interaction region is defined, it is possible tOfor the result so that the structure factor was only a function
calculate the energy for the system. of the magnitude of the wave number. This process is done
for each time step resulting in a time dependent structure
E= —JE s E ;.- (3.1) facto_r S(n,t), which can be compared to the predictions of
T jel(s) the linear theory.

The structure factor data generated as described above can
Herel (s;) represents the set of spins in the interaction regiorbe fit with the explicit form of the CHC theory given in Eq.
of spini. J is taken as one for the rest of this work. As (2.12. In this form,k andt are the independent variables and
R— < each spin interacts with more of its neighbors and thisk, T/R?, ¢/R?, and M are fitting parameters. Since linear
model approaches the mean field limit: though, for the modetheory is expected to fail at some finite time, the structure
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FIG. 4. The breakdown time for various quench depths and an
interaction range oR=7.

mains in real space of either up or down spins which for

large wave numbers become important to the structure factor
calculation, but for small wave numbers appear to cancel
each other out.

It is also possible to fit the structure factor to a general-
ized linear theory which includes higher order terms in the
expansion of the interaction while still being able to de-

FIG. 3. Examples of the structure factor as a function of time forcouple the modes. In fact Hopper and Uhimann show that for
these simulations. The structure factor for three values afre ~ Many common interactions the higher order terms are impor-
shown. The dotted line represents a fit to CHC theory while thetant [20]. Consider the dynamic equation for the structure
solid line is a fit to the generalized linear theory. This is in units of factor of the form
(kpT)/J andJ is taken as 1 in this work.

factor data were fit for some short time and then the fit was
expanded to include all the data which were consistent with
the preliminary fit. The fit was tried for the entire data set in
an attempt to find a consistent set of fit parameters for alHere M is a mobility, T is the temperature, and(k) is
wave vectors. Figure 3 shows the results of this fit procedurgalled the amplification factor which if set té\(k)=
for one set of data. The fit parameters are given in Table -R’k?—2¢ recovers Cahn-Hilliard-Cook theory. If this
and are consistent with expected results; however, it is clear
that while the explicit form of the linear theory fits the data
well for small wave numbers, consistent fits cannot be ob
tained for larger wave numbers for the same length of time
In fact, as the wave number increases, the time over whic GER = 10
the fit is consistent with the data decreases.

The time at which the linear theory fails can be read off
each graph and this time can be plotted against the wav
number. This is exactly what has been done in Figs. 4 and ¢
In Fig. 4 the data for several different quench depths ar¢
shown while Fig. 5 shows the data for different ranges of the
interaction. Note that in Fig. 5 the wave number is scaled by
the range so that the different data sets can be easily cor
pared. All the data sets show the same trend; the breakdow
time for small wave number is roughly constant and ther
drops off rapidly for larger wave number until it reaches a
point where the CHC theory does not fit the data eveh at
=0. That is to say that the slope predicted by linear theory a
t=0 is wrong for large wave number and so the nonlinear
terms become important there first. As we will see later, the FIG. 5. The breakdown time for various interaction ranges and a
nonlinear terms manifest themselves as small compact dauench depth oB=1.5.

% S(k,t)= —2MA(K)S(k,t)+2Mk,T. (3.3

4.0

Breakdown Times (MCS)




56 MORPHOLOGY OF EARLY STAGE PHASE ORDERING 5165

3.0 . . r 1.3 T 7
. %eﬁw - o
1.0 — o) -
3T 1 FE
. . . * 3 ﬁq‘ oR=7
—_ P aR=10
P Lot Lok % oR=15 .
Q 40F . ® scessccccscscces E f
E . LR . . F
. * .c 0.0 - T
457 * T Interaction range
L]
L]
05 s | . ! s
0.0 50000.0 100000.0 150000.0
50— . . . . . ®ny?
’ 0.0 10.0 20.0 30.0 40.0 50.0

n
FIG. 7. The amplification factor as a function dR)? for dif-

FIG. 6. The mobility as a function of wave number k7, ferent interaction ranges. The amplification factor is unitless.

—15.
g shown in Fig. 6 has no meaning other than to signal beyond
form of A(k) is plotted againsit?, the resulting graph should What point the mobility is fixed.
show a linear relationship. In this section we show that if We can now study the amplification factor as a function
A(K) is extracted from the time dependent structure factor0f n for systems with different ranges of interactions and
thenA(k) can be compared to the CHC form as well as otheiduenches to different temperatures. For large enough range

forms. the system should be well described by mean field theory
The solution to Eq(3.3) is and the physics should be independent of the range. In fact,
as discussed above, it should be possible to rescale all

S(IZ,t)=[S(Iz,O)—SV(IZ)]ex;:[—2MS;1(IZ)t]+S,,(IZ), lengths withR. When this is done, the wave number will

rescale asn— Rn. If we plot the amplification factor against
_ - Rn for systems which have different ranges but are quenched
S,(K)=k,T/A(k). (3.4  to the same temperature, the plots should collapse onto each
other. Figure 7 shows a plot of the inverse of the virtual
S,(k) is interpreted as the structure factor in equilibrium structure factor as a function oR()2. The data almost col-
within the linear approximation; that is, when the linear lapse to the same line. There is a slight offset inyttexis as
theory is a reasonably good approximation, the structure fadhe range increases. From the CHC form of the amplification
tor evolves towardS,(k). Far above the critical point the factor we see that thg intercept is related te, the differ-
linear theory is a good approximation a8g(k) is the equi- ence between the quench temperature and the critical point.
librium structure factor, while below the critical point the SinceT, varies withR [18], the critical temperature of the
linear theory is only a good approximation f&r1l and system approaches 1 from below as the range gets larger. So,
short times when the order parameter is small. In the latteif different systems are quenched to the same temperature,
case we will callS,(k) the virtual structure factor. the system with the larger range will be slightly further from
In Eqg. (3.4) the scattering intensity of a particular wave the critical point.
vector does not depend on the amplitude of other wave vec- If the CHC theory is correct, then the data plotted in Fig.
tors. Thus we can fit the data for each wave vector separatelyy should be linear witn?2. Clearly Fig. 7 is not linear:
to a simple function of time. All of the runs in this work are though it may be possible to approximaék) with a linear
temperature quenches frof= so the initial structure fac- function of n? for small n, for largern the amplification
tor is that of a random configuration of spinS(k,0)=1.  must have a functional form which includes higher orders of
Given these conditions we have only two fit parametdts, n?. (Note that odd powers oh are excluded due to the
andS,(k), which can be varied to minimize the residuals. symmetry of the potentigl.The reader may be concerned
The mobilityM in Eq. (3.4) is defined as a dimensionless that largen corresponds to length scales small enough to be
constant for Metropolis dynamics, though many investigator®on the order of the interaction range. To show that this is not
[21] absorb a factok,T making the mobility temperature the case, the wave number which corresponds to the interac-
dependent. Ludwig and PafR1] predicted that the mobility tion range,n;= (lattice size)R, has been marked in Fig. 7.
as defined in Eq(3.3) should be 4. Figure 6 presents a plot Notice that since all lengths in this figure have been scaled
of the mobility vs wave number. This plot shows that thewith R, this point is independent of the interaction range.
mobility is independent of the wave number and is randomly To explore the form oA(n) more carefully, we can look
distributed around 4. Aftem= 35 the structure factor initially at quenches to different temperatures. The amplification fac-
grows slowly, so the “signal to noise ratio” is fairly large. In tor for different quenches is shown in Fig. 8. The data for
order to fit to the form in Eq(3.4) more easily, the mobility three different temperatures are represented by different
was held fixed at 4; hence, the constancyMfaftern=35  symbols. As in Fig. 7, the data shown in Fig. 8 can be fit to
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true linear theory for all wave numbers. One way to test this
is to collect better statistics so that the noise in the scattering
amplitude for higher wave numbers is smaller, and then use
plots of (d/dt)S(k,t) vs S(k,t) to see if these higher wave
numbers do indeed obey a linear theory. Note that because
the potential used does not have circular symmetry, for these
higher wave numbers the circular average used above is not
a good approximation. The scattering amplitude is no longer
a function of the magnitude of the wave vector, and each
direction must be considered separately. Evidence for an-
other form ofS, will be given in the next section.
o5 820 o ] The results o_f thed/dt) S(_k,t) vs S(k,t) may also show
0-Z form that no form of linear theory is valid for large wave numbers;

that is, all forms fail in a way similar to that shown for the
> o — o CHC theory. Later in this paper other eviden(_:e for the failure
' ' n2 ‘ ’ of the linear theory at small length scales will be presented.

Although the form ofA(n) given in Eq.(3.5 may not be
correct, it fits the data well enough to be suggestive. From
Eqg. (3.3 we see thatA(n) is the Fourier transform of the
differential operator in front o§(k,t) in the dynamical equa-

a function that is linear im? for small values of. However, ~ tion. From Eq.(3.3 we see that this is also the operator in
for larger values of, higher orders oh? are needed to fit ront of ¢ in the Langevin equation and it is related to the
the data. Each order introduces another parameter whidnctional derivative of the free energy. From above we see
should have some physical meaning unless all the parametefi@t higher orders oh” are important, indeed we may need
are related. If the parameters are related, then the CHC for@dll orders for a complete linear theory. In real space, the
may just be the first term in a Taylor series expansion of thé-angevin equation will then have to include all even deriva-
correct form in which all orders afi? are present. For large V€S Of¢ in order to be correct and the free energy must also
n, A(n) appears to go to a constant value. A form whosenclude all even derivatives. If the true free energy includes
Taylor expansion is linear in? and approaches a fixed value higher order derivatives, then we should see their effect in
is the replacement?— 1—exp{—R2n?. We propose that the equilibrium measurements. As discussed earl_@;;(k) N
amplification factor in Eq(3.4) is approximated by would be the structure factor if the system were in equilib-
rium above the critical point. The relation &(k) is given in
A(n)=(1—exp —R?n?}—2¢) (3.5  Eg.(3.4 and so the equilibrium structure factor has the form

FIG. 8. The amplification factor as a function wf for various
quench depths. The amplification factor is unitless.

rather than the CHC form. This form was used to fit the ko T
measured values d&(n). These fits are represented by the S,(n)= (1—exp{—R?n%}+2¢)
curves in Fig. 8. The parameters for these fits are given in
Table I. It should be noted that these are exactly the paranFigure 9 shows the inverse of the measured structure factor
eters which would be present in CHC theory. In fact, thefor systems in equilibrium at the specified inverse tempera-
dotted lines plotted in Fig. 8 represeifn) as predicted by ture above the critical point. As with Fig. 7, the data sets in
CHC with the parameters given in Table I. Although it is Fig. 9 are plotted against’. Again we see that this is not the
better than the original CHC theory, the form for the ampli- linear relation predicted by the Ornstein-Zernicke form. The
fication factor given in Eq(3.5 does not correspond with fits here are of the form given in E¢B.6). The fit parameters
the theory for high wave numbers. A careful examination ofare given in Table Il. Since these are equilibrium data, there
the data shows that it is not possible to fit the low and highis no dependence on dynamics. This form should only de-
wave numbers with exactly the same parameters. The dafgend on the free energy. As discussed above, the free energy
shown in Fig. 8 were only fit for the range<n?><1500.  must include higher order derivatives.
These fits still deviate for large. Grewe and Klein have already deriv&fk) for the po-

The deviation of the fit in Fig. 8 may imply that the form tential used in this work22]. The potential used by Grewe
for A(n) given in Eq.(3.5) is still incorrect but there exists a and Klein is known as the Kac potential and is of the form

(3.6

TABLE |. Parameters for fitting to the modified linear theory. Numbers in square brackets are powers of

10.
R B 2¢ R? B
7 1.2 0.0908.0026 0.00111 (2.1-5]) 1.49 (0.0149
7 1.5 0.18910.0059 0.001 08 (3.1[—5]) 1.7730.022
7 2.0 0.24 (0.013 0.00094 (4.7-5]) 2.1390.039
10 1.5 0.222€0.0097 0.002 506 (9.3[—5]) 1.6470.02

15 15 0.255(0.0089 0.00545 (0.000 14 1.7220.019
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IV. USING CLUSTERS
-5 ' ' ' ' ' ' TO EXPLORE THE EARLY TIME MORPHOLOGY

It has been shown above that the linear theory can be
extended by including all orders of the interaction expansion.
It is also argued above and in a previous paper that linear
theory, as well as the extension, fail first not at large length
scales, as would be concluded from the fact a0 is the
fastest growing mode, but at small length scales. The remain-
der of this paper will be devoted to studying the structures
which develop on small length scales and connecting the
existence and growth of these domains to the breakdown of
linear theory. These structures will be explored using a clus-
ter mapping defined by Coniglio and Kle[23]; however,
we shall first explore the cluster distribution which is present
0.0 \ ) ) ) , in the system at the time of the quench.

0 500 1000 1500 2000 2500 We have assumed throughout this work that the starting
configuration is a lattice of random spins which corresponds
to a system that is prepared at very high temperatures.

FIG. 9. Equilibrium structure factor plotted vs for various ~ Coniglio and Klein have shown that for a spin configuration
quench depths. This is in units okyT)/J. which corresponds to a system in equilibrium there is a per-

colation transition at the critical temperature and that an in-
finite cluster which corresponds to the majority phase is
dQresent. In this section we will use simulations to show that,
for a mean field system with @ndom distributionof spins,
A percolation transition also occurs for the bond probability
Jpo=1—e"?# with B set to the inverse of the thermal critical
temperature. In the mean field case there will be two infinite
clusters, one for the up spins and one for the down spins.
In the mean field limit we can argue that a percolation
- - - transition exists for a random distribution of spins. If each
[S(k)]™*=1-BpL(Kk), (3.7) spin interacts withg other spins then ag goes to infinity,
the model approaches the mean field limit. We rescale all
temperatures with respect tpso thatB— B/q so that the
rescaled thermal transition temperature correspondg.to
~ . =1. For largeq the bond probability defined by Coniglio
this work L (k) is and Klein approachep,=2 8/q. For a random configura-
tion of spins only half of the spingy(2) which interact with
a particular spin are in the same direction as that spin. Since,
for mean field percolation, the critical bond probability is the
—2e. (3.8 inverse of the number of possible bongs= 2/q, then with
a random configuration of spins and the temperature set at
that of the thermal transition, the Coniglio-Klein bond prob-
The last term in Eq(3.8) comes from excluding the interac- ability corresponds to the critical bond probability and so
tion of each spin with itself. Expanding E(B.7) in a power  there exists a percolation transition.
series we can recover the Ornstein-Zernicke form for small |t is possible to test these arguments via Monte Carlo
wave vectors. Because of poor statistics and circularly aversimulations where the spin configuration is fixed, but many
aged data it was not possible to compare the simulation resond configurations are sampled. The percentage of bond
sults directly with the form of the structure factor derived by configurations which contained spanning clusters can be
Grewe and Klein; however, the first few terms of the expanyplotted againsp. Stauffer and Aharony argue that this func-
sion of L(k) are consistent with the first few terms of the tion, which they calll, is only a function ofg and the lattice
proposed structure factor. sizeL [24]. For an infinite lattice]l is a step function with
the step ap3.., while for finite latticeslI increases smoothly
from zero belowg,, to unity above it. This is shown in Fig.
10 wherell is plotted againsiB for various values of the
lattice size. The data shown are for an interaction raRge
B 2¢ R2 B =7.L varies from 128 to 512.
Stauffer and Aharonf24] suggest the form foll is given

S(k)"!

0s5f

V(x)=y%¢(yx). For our worky=1/R and ¢ is a step func-
tion in the form of a square as described in Sec. Il. Notic
that for this work the factor ofy®=1/q was initially associ-
ated with the inverse temperature but was scaled away.
then reappears in the potential. Grewe and Klein found th
the inverse of the structure factor has the form

where B is the inverse temperature, is the density of up
spins, and_ (k) is the Fourier transform of the potential. In

sin kyR sin kR
kR kR

TABLE Il. Parameters for equilibrium structure factors. Num-
bers in square brackets are powers of 10.

0.9 0.1018.0059 0.0012843.4[5]) 1.0740.01

R
7 0.6 0.590.016 0.0011786.1[5]) 0.7110.013 by
7
7 10 0.01160.009 0.0013182.4[5])) 1.18880.007%

M=®[(B-BJLP]=C+ (B~ BIL™"], (4]
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lines shown are fits to the data using the Domb and Dalton

1.0 ' ' form. The parameters for the fit of the percolation data are
I'=-0.606(0.015) and=7.27(0.58). The slope is consis-
G-Oup.L=128 tent with that of the slope of the thermal probleii=
08T ;'(.]down,L=128 —0.666(0.068).
s =l From these results we see that the critical temperature for
O—0yp.L=512 the thermal problem and the critical temperature for percola-
0.6F +*down,L=512 tion on a random lattice both scale in the same way with the

coordination number, although the prefactor is different.
Thus, for a sufficiently deep instantaneous quench below the
critical point, initially there are two infinite clusters which
are uniform over the lattice. If the system is quenched to a
point below the thermal critical point but above the percola-
tion transition no infinite clusters are initially present. Even-
tually, as the system evolves, only the equilibrium infinite
cluster appears. The temperature region in which this occurs
narrows as the interaction range increasesge that the scale
in Fig. 11 is logarithmig so that in the mean field limit, for
any quench to a temperature below the critical point, two
B infinite clusters are present. We will see below that the two
infinite clusters which appear can be used to follow the mor-
FIG. 10.11 vs the inverse temperatugefor various lattice sizes. Ph_O'F’gy of the Sy_Stem as it eYONes' Evr-;ntually one o_f thgse
These curves intersect at the critical temperature. infinite clusters will have to dissolve while the other fills in
to become the equilibrium infinite cluster which corresponds
where ¢ is an odd function aroun@, and approaches C  to the magnetization. This suggests that there exists a “mean
for small 8 and (1—C) for large 8. C is independent of the field” dynamics whose morphology is inherently different
lattice sizel so atB= ., II=C for any lattice size; thus at from dynamics of systems which are nonmean field. The
B= B the curves forll intersect. This can be used to find dynamics of this morphology is what we will explore in the
B.. We see from Fig. 10 thag, for this range of interaction rest of this paper _ .
is between 1.25 and 1.28. To follow the evolution of the cluster structure, a single
Using the method described above, the percolation poingyStem is prepared at infinite temperature and allowed to
was found for interaction ranges froR=1 to 15. To ex- €volve. At various time intervals the spin configuration will
plore the scaling of the percolation transition the invers?® frozen and a number of bond configurations will be
temperature at which the transition occyfs,, can be plot- sampled. Using the measured cluster properties we will ob-
ted againsy. We show this in Fig. 11, where we compare S€"ve the morphology of the system as a fun_cfuon of tlr'ne..As
the scaling of the percolation transition to that of the thermafn® System evolves, structure can be identified by viewing

transition calculated by Domb and Dalt¢a8]. Both the the enhancement of the probability of belonging to the infi-
nite cluster; that is, by visualizing the differené®.(x,t)

—(P..(x,0)), whereP,(x,t) is the probability that a spin at
positionx belongs to the infinite cluster at tinte Since the
mapping identifie®,, with the magnetization, and the coarse
AThermal grained magnetization is the order parameter for this prob-
®Percolation lem, then the spatial fluctuations and evolutionRof repre-
9Domb and Dalton sent the spatial fluctuation and evolution of the order param-
1 eter. Since the initial configuration is a random uniform

distribution which exhibits both an up and a down infinite
cluster, these infinite clusters cancel each other, resulting in
zero magnetization. This situation is much like that of a
“false vacuum.”

We will use the enhancements Bf, over its initial value
to identify primitive domains in the system. Given the above
arguments, we construct these enhanced regions in the fol-
lowing manner.

n

0471

1.40

10 T T T

qB, -1

(1) The simulation is frozen at a particular time step, and for
that particular spin configuration many configurations of
! 10 100 1000 10000 the bonds are sampled. For each bond configuration it is
q noted which sites belong to the spanning cluster.
(2) P.(x,t) is estimated for each site by dividing the num-
FIG. 11. Scaling of transition temperature with coordination  ber of times that site belongs to the infinite cluster by the
number. number of bond configurations sampled.
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FIG. 12. (Colon Visual representations of the enhancements of spanning cluster. The figures on the left show the spin configuration at
0.5 MCS(top), 1.0 MCS(middle), and 1.5 MCSbottom). Those on the right are a visualization of the enhancement of the infinite cluster
using the procedure described in the text.

(3) The average value d?,, for the initial random configu- gets closer to the mean field limit. The Vam%og
ration is calculated. For this configuratioR,, is nearly =(P..(x,0))+30[P.(x,0)] is used as a background
uniform over the system, having a small standard devia-  subtraction a$..(x,t) evolves. Her€---) is the average
tion. This standard deviation should go to zero as the over position ando{:--] is the standard deviation over
range of interaction goes to infinity, i.e., as the system  position.
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FIG. 13. The integrated magnetization of an enhance domain as FIG. 14. The integrated magnetization of another domain in the
a function of the distance from its center. This is simply the differ- Vicinity of the one shown in Fig. 13.
ence between the number of up spins and the number of down spins
inside a radius. than 50%, while the exterior still has a random distribution
of up and down spins with a definite interface between inte-
rior and exterior. The fitted line shows that the density of up
spins inside these domains is roughly half the equilibrium
density, therefore in the interior of the droplets the order
The visual realization of the procedure outlined above igparameter is not small, so the evolution of the order param-
shown in Fig. 12. In the third step above the value of threeeter in the interior of these droplets should not obey a linear
times the standard deviation was chosen so that no enhandéeory.
ment appears for the initial state. As the range is increased, Figure 14 shows the profile of another domain which is
the standard deviation will go to zero so that this cutoff is notadjacent to the domain whose profile is given in Fig. 13.
needed in the mean field limit. Notice that for large radius both profiles start to decrease.

Now each site has associated with it a measure of howhe two domains shown are of opposite sign, and the de-
connected it is to one of the two spanning clusters andrease at largeis the contribution of the other domain to the
whether that connectivity has increased since the quench. Teum. In the case of Fig. 14 we see the effects of even a third
identify domains, we consider all spins of the same sign fodomain, this time of the same sign, causing the integrated
which the measure is nonzero and which are within one inmagnetization to start increasing after it has started to de-
teraction length of each other to be part of the same domairtrease. This is confirmed by detailed analysis of the domain
Having done this we can identify the mass, center of mass;onfigurations generated by the procedure described above.
and radius of gyration of each domain. We will explore the At a time slightly greater than one MCS these domains
domain profile in the next section and we will show thatbegin to interact. Domains of the same sign will start to
these domains have a significant magnetization as comparegalesce, while domains of different signs form phase
to the equilibrium magnetization, and that the domain boundboundaries. The coalescence of domains can be seen by plot-
aries are sharp. These domains were predicted in[R8f. ting the number of domains as a function of time. Figure 15

The domains shown in Fig. 12 appear to have distinctshows this effect. Here we see three sets of data for different
edges. To verify that this is actually the case the spin coninteraction ranges all run g=1.5. The scaled density is the
figuration itself can be analyzed. Using the center of mass dfotal number of domains divided by the volume of the sys-
one of the domains the domain profile is constructed frontem measured in interaction voluméhat is, the volume of
the spin configuration by calculating the integrated magnetithe system divided by the volume of an interaction region
zation inside a disk of a particular radius centered around th&he first thing to note is that the cluster density scales with
center of mass of a domain. From a plot of this integratedhe interaction range in the obvious way, that is, once the
magnetization vs the radius the domain profile can be devolume is rescaled the density is independent of range. Up to
duced. For the rest of the paper we will refer to such a plot asne MCS the number of domains is increasing as new do-
the domain profile. Figure 13 is just such a plot and showsnains form. At one MCS the domains start to interact and
the domain profile for a specific domain plotted at successiveoalesce, though new domains must also be forming because
time steps. The dark solid line is a fit of the latest domainthe domain densitfthe number of domains per unit volujne
profile to a parabola. The profile of the domain at each timestays constant for a short time. The domain density begins to
step exhibits similar behavior: that is, at each time step thelecrease after 1.5 MCS, signifying that no new domains are
integrated magnetization increases as the square of the rafilirming; any fluctuations that do happen occur either inside
up to a specific radius, and then the integrated magnetizatioof or within one interaction range of a domain which is al-
is a constant. This signifies that the interiors of these doready present. The domain density decreases after 1.5 MCS
mains have a uniform density of up spins which is greatelas the domains continue to coalesce.

(4) At each time stefP..(x,t) — Py is calculated. If this is
less than zero, it is set to zero.
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interacting neighbors that spin has in the same direction as

0.25 y . the spin. So the initial distribution of interaction region mag-
netizations is
@ R=7
- 2K . :
0.20 F o e ) 1 - —m
-' = : - P(m,O)— (271_0_)1/2 eXF{ 20_ ), (44)
z T 25 ‘
£ o1sf oS -2"?4’5 . whereo is the spread of the initial distribution. The coeffi-
5 Y E -'éfg'z"- | cientsA, then become
T B o ] Al oo TN D)2 A
T§ & o gt "o €X STV BE (4.9
@ D 40
°a
005 | & . and the probability distribution becomes
of
| of
s 1 mm2n+1\?
e ) P(Mt)=> — exp{—(zaﬂ) —_— }
0.00y 5 2.0 3.0 n 20 2M
time (MCS]
Tm(2n+1)
(o]0 T . (46)

FIG. 15. Scaled domain density as a function of time from dif-

ferent interaction ranges. We want to know the percentage of domains which have

passed through the boundaries. This can be found from the
ercentage of domains which are still contained in the
oundaries.

It is possible to predict the growth rate of the domain
density for the early times using arguments first proposed b
Ray, Tamayo, and Kleif25]. These authors show that, for a
mean field system in equilibrium, the time dependence of the M 4M 1
magnetization can be modeled as a random walk in magne- j P(m,t)dm= Z exp{ —(20+1)
tization space. This argument should apply for regions which M 20m ‘7 (2n+1)

have not reached threshold, that is, for regions which contain mon+1\2
no domains. Regions which have reached threshold are no X\ M 4.7

longer doing an unbiased random walk and are trapped in the
well into which they have fallen. We are able then to calcu-

late the percentage of regions which have passed the thres he number of domains that have passed the threshold then
Pe tag 9l whi Ve p i D(t)zl—fELP(m,t). Since the argument of the expo-
old at a given time.

In the continuum limit, a random walk can be describednentlal forn=1 is nearly an order of magnitude bigger than

by a diffusion equation. To model the case in question, abJEhat forn=0, we can drop all the higher order terms and

sorbing boundary conditions will be used to account for theOnly look at then=0 term in this sum. Since we are only

regions which have exited the top of the hill and are no'me.reSted in short times, we expand this term in a power
longer performing a random walk. We can solve the diffu-S€"€S and look at the leading orders.

sion equation with these conditions along with the appropri- AM
ate initial conditions and find the percentage of domains D(t)~1— ——
which are no longer inside the boundaries as a function of 20m
time. If P(m,t) is the percentage of interaction region with
magnetizatiorm at timet then the diffusion equation is

. 4.9

aT 2
1—(m) (20+1)

We see in Eq(4.8 that for short times the number of do-
mains that will be above threshold grows linearly with time.

d 2 Looking at Fig. 15 this is exactly what we observe.
a P(m,t)= W P(m,t) (42)
V. SOME CONCLUDING REMARKS

For absorbing boundaries at magnetization-&tl, the solu- The aim of the work presented above was to understand
tion to Eq.(4.2) is the breakdown of the linear theory, which at best describes
the early stage continuous ordering and spinodal decomposi-

Pm=3 A co Tm(2n+1) tion. A simple analysis of the spatial structures predicted by

' 7 " 2M the CHC theory shows that compact domains will form on

) small length scales and the order parameter inside these do-
Xe)q{_t(Trm(ZnJr 1)) } 3 mains will quickly grow so that the linear theory will no
2M ' ' longer be valid in the interior of these domains. The time
associated with the failure of the linear theory within these
The initial conditions will set the value ok, . Initially the  domains scales as R)/e consistent with the predictions of
magnetization of each interaction range is distributed in @Binder[9]. Our simulations have confirmed part of this pic-
normal Gaussian distribution. Note that the probability that aure, however, there are subtle but important differences. It is
spin belongs to the infinite cluster is related to the number ofmportant to note that the simple analysis of the CHC equa-
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tion, as well as Binder’s construction of the Ginzburg crite-model onto a percolation model to identify growing domains
rion, are consistency checks and do not rule out that the CHOf up and down spins which are surrounded by a sea of
theory will fail on shorter time scales. randomly distributed spins. The random distribution is ex-
In fact, we have shown both here and in a previous workpected since the system was equilibrated atprior to the
[13] that the linear theory fails first on short length scales.guench. The order parameter in the interior of these domains
We did this by comparing the structure factor measured fronts quite large, comparable with the equilibrium value, and so
Ising model simulations to the structure factor predicted by2 linearized theory should no longer be valid in the interior.
linear theory. We presented data which confirmed that thd he order parameter in the exterior of these domains is still

breakdown time was a function of the wave number andMall and so the linear theory should still be valid on length
decreased with higher wave numbers. This was true eVeﬁcales larger than the average domain size. We found that the

when we included the details of the interaction energy in alz€ O_f the_ domains appears to coincide with the length s_cale
generalized linear theory. However, the scaling of the break&t W.h'Ch I|nea_1r theory has failed _and we have _shown n a
down time withR ande was not confirmed. previous publicatior{13] that th_e Imear'theory fails on all

It is also interesting to note that the system appears tJ)er)gth scales when the domains of either the up or down
“decide”which well it will go into when the domains per- spins perco_late and hence span the system. The d_|fference
colate. In every case when the up domains percolate the Syg_etwee_n this result and the consistency checks discussed
tem goes into the up magnetization well. The same proce ove IS thafc any grovvthi?s.somated with the instability ap-
occurs with the opposite sign when the down spin domain®€ars on a time scgle of . independent Of. RThe R de-
percolate. We have also tested this by taking a system tBend_ence appears in the time scale assomated_ with the per-
completion and noting which well it has chosen. We thencolatlon of domains. Since the breakdown of linear theory

rerun the system with the same initial conditions and samgasf been conne_cted to the grpvvth of compact isolated do-
noise field(same random number sgedt several time in- mains, any nonlinear theory will have to account for them.

tervals we stop the evolution, make several identical copiesThIS |s'n0t done fo.r theories suph as those of Langer, Bar-on,
and restart each copy with different noise. If the variousand Miller [7] or Billotet and Binder[8].
copies are_made_z before the domains have_z coalesced then half ACKNOWLEDGMENTS

of the copies will fall into the up well while the other half

will fall into the down. On the other hand, if we perform this  The authors would like to thank Richard Brower and Har-
process after domain coalescence, all the copies will fall intovey Gould for many useful conversations and Robert Putnam
the same well. Note that domain coalescence occurs early iior technical assistance. This work was supported by Grant
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