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Morphology of early stage phase ordering
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We present results of Monte Carlo simulations of critical quenches in Ising models with long range inter-
actions indicating that linear theories of continuous ordering such as Cahn-Hilliard-Cook theory break down
first at high wave numbers or small length scales. We connect this breakdown to the formation of isolated
domains that resemble the stable phases. These domains grow and coalesce, causing deviations from the linear
theory to appear at smaller wave numbers. When the domains of up~down! spins percolate the failure of the
linear theory occurs on all length scales and the system has chosen the up~down! global magnetization state.
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I. INTRODUCTION

Phase ordering kinetics occurs, for example, when a
tem undergoes a temperature quench from a disordered
above the critical temperature to a final state inside the
existence curve@1#. If the order parameter is conserved, su
as in binary alloy phase separation, this process is know
spinodal decomposition~SD!. If the order parameter is no
conserved and not coupled to a conserved quantity, whic
the case when a system has undergone an order-dis
transition, this process is known as continuous order
~CO!. Both these processes are of technological interes
the materials science and metallurgy community; for
ample, alloys become embrittled when phase separation
curs @2,3#. On a fundamental level, the phase ordering p
cess serves as an important test of our understandin
nonequilibrium dynamics. The goal of the work presen
here is to describe the structures which form at early time
the processes and understand how they affect the evolu
of the system.

The phase ordering process can be divided into sev
time regimes. At early times when the composition fluctu
tions are small, the dynamics are believed to be linear
characterized by exponential growth of composition fluct
tions @4,5#. At late times, the system effectively consists
domains of the different phases separated by sharp in
faces. In this late stage regime, the domain growth is de
mined by the dynamics of the interfaces and characterize
dynamic scaling; that is, the domain morphology is invaria
and can be described by a characteristic length scale
grows with time@6#. Aspects of both the early stage and t
late stage seem to be well described theoretically: howe
attempts at a crossover theory have met with little succ
Perturbative expansions fail at about the same time as
linear theory@6# and other attempts such as those by Lang
Bar-on, and Miller @7# as well as Billotet and Binder@8#
involve uncontrolled approximations. This paper is co
561063-651X/97/56~5!/5160~14!/$10.00
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cerned with the limits of the early time regime at which t
linear theory first fails to describe the evolution of the Fo
rier modes.

The linear theory for spinodal decomposition was intr
duced in 1959 by Cahn and Hilliard@4# and later extended by
Cook to include thermal noise@5#. They predicted that a
early times the composition fluctuations will grow expone
tially at long wavelengths while the short wavelength mod
relax to ‘‘false’’ equilibrium values. In 1984 Binder pre
sented a Ginzburg-like consistency argument which sta
that the linearized approximation is consistent for sh
times, but becomes inconsistent for time greater than so
critical time tc which scales with the range of interaction@9#.
This is discussed further below. Although experimen
@10,11# and simulations@12# agree with the linear Cahn
Hilliard-Cook ~CHC! theory for certain parameter regime
there are experimental indications that the linear predicti
fail first on short length scales@10#. As we reported in a
previous Letter@13#, using Ising model simulations we hav
confirmed the observation that the linear theory fails first
short length scales. In addition we also presented evide
for the formation of dense domains whose size correspo
to length scales at which the linear theory has failed. We a
showed that the linear theory fails on all length scales wh
the domains coalesce. In the current paper we show in d
how the linear theory fails to fit the simulation data at sm
length scales and present a generalized linear theory wh
though it better describes the evolution of the order para
eter, still fails in the same manner as the CHC theory.
nally, we study the structures of the domains which form
these length scales and discuss how they cause the failu
the linear theory.

The remainder of this paper is structured as follows.
Sec. II we review the linearized theory and attempts to p
dict the time at which it fails. In Sec. III the linear theor
analysis of the simulation data is presented. The data
analyzed using both the standard CHC theory and a gen
5160 © 1997 The American Physical Society
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56 5161MORPHOLOGY OF EARLY STAGE PHASE ORDERING
ized linear theory. Though the generalized theory give
better fit to the data using the same number of free par
eters, evidence is presented which suggests that both the
fail on short length scales first. In Sec. IV a cluster mapp
is used to identify growing domains of up~down! magneti-
zation. We argue that these regions, which are of a
which is between an interaction range and a correla
length, are linked to the failure of linear theory on sho
length scales first.

II. REVIEW OF LINEAR THEORY

In this section we describe the linearized equation of m
tion for the order parameterf(x,t) and structure factor
S(k,t) for the case of the nonconserved order parameter
present a consistency check to predict the time at which
linear theory is no longer a good approximation. Followi
Cahn and Hilliard and Cook@1,4,5#, we begin with the
Langevin equation@14#. When the order parameter is n
conserved its equation of motion is

]

]t
f~xY ,t !52M

dF

df
1h~xY ,t !. ~2.1!

For the time scales considered in this work, the mobilityM
can be assumed to depend only on the temperature.h is
uncorrelated Gaussian noise which satisfies the conditio

^h~xY ,t !&50, ^h~xY ,t !h~xY8,t8!&5MkBTd~xY2xY8!d~ t2t8!,
~2.2!

whereT is the temperature andkB is Boltzmann’s constant
F is taken as the Ginzburg-Landau~GL! free energy with
zero magnetic field.

F@f#5E dxY$R2@¹W f~xY ,t !#21«f2~xY ,t !1f4~xY ,t !%.

~2.3!

Here,R2 is the second moment of the interaction potent
which can be taken as a measure of the interaction range
the parameter«5(T2Tc)/Tc is the reduced temperature.
we insert Eq.~2.3! into Eq. ~2.1! we get

]

]t
f~xY ,t !52M ~2R2¹2f12«f14f3!1h~xY ,t !.

~2.4!

This nonlinear equation has not been solved analytica

however, if we assume thatf(xY ,t) is small so that we can
ignore thef3 term we obtain the linear Cahn-Hilliard-Coo
equation.

]

]t
f~xY ,t !52M $R2@¹2f~x,t !#12«f~x,t !%1h~xY ,t !,

]

]t
f̃~kY ,t !52M ~R2k212«!f̃~k,t !1h̃~kY ,t !, ~2.5!

where the second equation in Eq.~2.5! is the spatial Fourier
transform of the first. The solution to the homogeneous eq

tion @h(xY ,t)50# is
a
-
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a-

f~k,t !5f0~k!exp$2M ~R2k212«!t%, ~2.6!

which is simply the solution to the Cahn-Hilliard equation
originally presented in 1959@4#. For«.0 Eq.~2.6! indicates
that any perturbation will decay; however, if the system
quenched to below the critical temperature, then« is nega-
tive and, for small wave vectors,f(k,t) will grow. We can
take the inverse Fourier transform of Eq.~2.6! to recover the
real space configuration generated by this growth. In t
dimensions we obtain

f~x,t !5
f0p

2MR2t
expS 22«Mt2

x2

4MtR2D , ~2.7!

where we have assumed thatf0(k) is a constant. This cor-
responds to an initial spatial configuration which is ad func-
tion at the origin. Assuming that« is negative the argumen
of the exponential can be rewritten as@8u«uM2t2

2(x/R)2#/4Mt. This suggests that at early times a growi
domain has two growth fronts: a weak front which advanc
linearly with time, and a more robust front which advanc
like a random walk.

Equation~2.6! is the homogeneous solution of Eq.~2.5!
and so it does not include the noise termh. In 1970, Cook
obtained a form for the structure factor which included t
noise @5#. To find the full solution to the CHC theory, w
impose the causality condition and use the retarded Gr
function.

f̃~k,t !5f̃0~k!exp~2M $R2k212«%t !1E
0

t

dt8h̃~k,t8!

3exp$2M ~R2k212«!~ t2t8!%. ~2.8!

By using the definition of the structure factorS(k)
5^uf̃(k)u2& along with the solution for the order paramet
in Eq. ~2.8! we can find the equation of motion for the stru
ture factorS(k,t).

]

]t
S~k,t !52K Uf̃~k,t !

]

]t
f̃~k,t !U L ,

]

]t
S~k,t !52^uf̃~k,t !@2M ~R2k212«!f̃~k,t !1h̃~k,t !#u&

52~MR2k21«!^uf̃~k,t !u2&12^uf̃~k,t !h̃~k,t !u&.

~2.9!

The first term in the last line of Eq.~2.9! is the equation of
motion for the structure factor derived by Cahn and Hillia
@4#. Using Eq.~2.8!, the second term yields
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^uf̃~k,t !h̃~k,t !u&5E
0

t

dt8^h̃~k,t8!h̃~k,t !&exp$M ~R2k2

12«!~ t2t8!%

5MkbTE
0

t

dt8d~ t2t8!

3exp$M ~R2k212«!~ t2t8!%

5MkbT. ~2.10!

The full equation of motion for the structure factor becom

]

]t
S~k,t !522M @R2k222u«u#S~k,t !12MkbT,

~2.11!

and its solution is

S~k,t !5@S~k,0!2Sn~k!#exp$2D~k!t%1Sn~k!,

Sn~k!5
2kbT

R2k222u«u
, D~k!5M @Sn~k!#21. ~2.12!

Equations~2.11! and~2.12! describe the CHC theory as pre
sented by Cook in 1970@5#. We have explicitly inserted a
negative sign in front of theu«u and so Eq.~2.12! describes a
system which has been quenched from a temperature a
the critical point to a temperature below it. There are seve
features of this result which should be discussed and
illustrated in Fig. 1. In this figure the inverse of the CH

form of Sv(kY ) has been plotted againstk2. First it should be

noted that there is a critical wave vector whereSv(kY !
changes sign. This is given by

R2kc
222u«u50⇒kc5A2u«u/R. ~2.13!

For wave vectors belowkc , Sv(kY ! and D(k) will be nega-
tive; so, for small wave vectors the argument of the ex
nential in Eq.~2.12! will be positive and the structure facto
will grow exponentially. For wave vectors abovekc , the

structure factor will relax exponentially towardsSv(kY ).

FIG. 1. Dynamic domains for CHC theory. The modes belowkc

grow exponentially while those abovekc relax.
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If linear theory were exact, then the equilibrium structu

factor would beSv(kY ). However, since*S(kY ,t)dkY is a con-
served quantity~the system volume is a constant!, exponen-
tial growth cannot go on indefinitely. For quenches to bel
Tc , the nonlinear terms in Eq.~2.4! will start to become
important. At some timetc the growth of structure factor a
small wave vectors will be limited when the linear theo
will fail to accurately describe the system. Note that if t

system was above the critical point.Sv(kY ) would always be
positive and all wave vectors would relax exponentially

their equilibrium value which is given bySv(kY ). Thus, with
the appropriate change of sign, we recover the Ornst
Zernicke form of the structure factor for a system above
critical point.

Now that the properties of the linear theory have be
discussed, we can consider when it is valid. As we have s
there exists a timetc at which nonlinear terms become im
portant and the linear theory must fail to describe the evo
tion of the structure factor. Before summarizing the arg
ments of Binder@9# which predict this breakdown time, w
first need to review some scaling considerations.

Length scales smaller than the interaction rangeR should
have very little significance for CHC theory, so we should
able to rescale all lengths with respect to the interact
range,f(x)→af(x/R), however, we do not know the rela
tion betweena and R. Since the Langevin equation relate
the time evolution off to the noise fieldh, we can use the
scaling ofh to uncover the scaling off.

For Gaussian random noise we have the relation

^h~xY ,t !h~xY ,t8!&5MkbTd~xY2 x̄8!d~ t2t8!. ~2.14!

The scaling property of thed function implies a scaling re-
lation for the noise,

1

Rd d~xY /R!5d~xY !⇒ 1

Rd/2 h~xY /R,t !5h~xY ,t !. ~2.15!

In linear theory we can assume that the fieldf scales in the
same way as the noise. This is consistent with the units of
derived from the Ginzburg-Landau free energy given in E
~2.3!. Assuming that the units of energy have been sca
away, then the integrand in Eq.~2.3! must have units ofL2d.
Since« in Eq. ~2.3! is dimensionless, thenf must have di-
mensions ofL2d/2. When rescaling lengths byR we see that
the field must have the scaling of the noise given in E
~2.15!.

We can now outline a consistency check for linear theo
From Eq. ~2.4! the linear theory should describe system
undergoing continuous ordering or spinodal decomposit

as long asf(xY ,t).f(xY ,t)3 or 1.f(xY ,t)2. If we takef0(k)
in Eq. ~2.6! to be a Gaussian instead of flat as we assum
earlier then we can set the initial amplitude to be sm
enough so that the linear approximation holds for allk at
zero time. Then the argument of the exponential equa
~2.7! becomes

8u«uMt2~MR212D!2x2

4t~MR212D!
. ~2.16!
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56 5163MORPHOLOGY OF EARLY STAGE PHASE ORDERING
HereD is the square of the inverse width of the initial Gaus
ian in k space. We see that the fastest growth occurs
smallx and so this is where the consistency check should
first. Inserting the scaling relationship forf given in Eq.
~2.15! into the solution to linear theory, it is possible to ge
time scale beyond which linear theory is invalid.

f~0,t !5
exp~2M«tc!

Rd >1⇒tc5
d

2M«
ln~R!. ~2.17!

tc is weakly dependent onR which implies that linear theory
is a good approximation for long range models. It is a
strongly dependent on the distance from the critical po
This is consistent with the results of Binder@9#, but Binder’s
argument does not indicate that the linear theory will fail
small length scales first. Note that this is a consiste
check; the linear theory may still fail at times earlier than t
critical time tc obtained in Eq.~2.17!. Another argument
based on a supersymmetric representation of the CHC th
is given in Ref.@15# and predicts that the linear theory wi
fail on small length scales at times shorter thantc . This was
confirmed by the simulations done in our previous wo
@13#. Finally, Yeung, Gross, and Costolo@16# use mode slav-
ing arguments to calculate the breakdown time for differ
Fourier modes and showed thattc(k);k22.

III. ANALYSIS OF THE STRUCTURE FACTOR DATA

In this section we present two different methods for us
linear theory to analyze the structure factor data. The fi
method we present fits the structure factor to the exp
form of the CHC theory. For this method we are able
estimate the breakdown time as a function of wave num
We see that as the wave number increases the breakd
time gets smaller; thus the linear theory fails first at lar
wave numbers. The second method uses a more genera
linear theory. This method allows us to fit the data mo
closely for larger wave numbers. It still appears though t
the linear theory will fail first at large wave numbers. Th
last section shows that the generalized theory is also us
in analyzing equilibrium data.

To test the prediction of the breakdown time for the line
theory simulations of the long range Ising model~LRIM !
were used. In the LRIM a spin interacts with all of the oth
spins in a set region defined by some rangeR. In this work
the region we chose is the square shown in Fig. 2. As
range is increased, the strength of the interaction is scale
1/Rd to keep the energy per spin finite@17#. For these models
the physics depends only on the dimension of the system
the number of spins in the interaction range, which we w
call q.

Once the interaction region is defined, it is possible
calculate the energy for the system.

E52J(
i

si (
j PI ~si !

sj . ~3.1!

HereI (si) represents the set of spins in the interaction reg
of spin i . J is taken as one for the rest of this work. A
R→` each spin interacts with more of its neighbors and t
model approaches the mean field limit: though, for the mo
-
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to be consistent, the thermodynamic limit should be tak
beforeR is taken to infinity@17#. It was shown by Domb and
Dalton @18# that the inverse critical temperature for th
model scales with the interaction range and that scaling
given by

bc5
1

q S 11
A

qGD , ~3.2!

whereA53.7 andG50.666.
To explore the CHC theory thoroughly, systems of diffe

ing ranges and quench depths were investigated. First
systems studied in this work start from an initial configur
tion of a random distribution of spins, which corresponds
a system in equilibrium at infinite temperature. Systems w
interaction ranges of 7, 10, and 15 were quenched to
inverse temperature ofb51.5 in units where Boltzmann’s
constant is set equal to unity. Also, systems of range 7 w
run at inverse temperatures varying betweenb51.2 to b
52.0. Note thatb51.0 corresponds to the critical temper
ture for this system in the mean field (R→`) limit. The
exact critical temperature for the finite range systems u
here differs from the mean field limit by only a few perce
at most@18#. All systems are run on a two dimensional la
tice, of size 5123512, with open boundary conditions. Th
boundary conditions are chosen to facilitate the clus
analysis which is discussed later in this work. A rando
update scheme was used to evolve the system@19#. For each
set of parameters, 48 independent systems were run for
Monte Carlo steps~MCS!. Configurations are saved ever
1/32 of a MCS. For each of these times, the structure fa
for each independent run was calculated. These are then
eraged over the 48 runs and a circular average is calcul
for the result so that the structure factor was only a funct
of the magnitude of the wave number. This process is d
for each time step resulting in a time dependent struct
factor S(n,t), which can be compared to the predictions
the linear theory.

The structure factor data generated as described above
be fit with the explicit form of the CHC theory given in Eq
~2.12!. In this form,k andt are the independent variables an
kbT/R2, «/R2, and M are fitting parameters. Since linea
theory is expected to fail at some finite time, the structu

FIG. 2. This figure shows the geometry of the interaction reg
used in this work. The number of spins that a given spin intera
with is q5(2R11)221.
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factor data were fit for some short time and then the fit w
expanded to include all the data which were consistent w
the preliminary fit. The fit was tried for the entire data set
an attempt to find a consistent set of fit parameters for
wave vectors. Figure 3 shows the results of this fit procedu
for one set of data. The fit parameters are given in Table
and are consistent with expected results; however, it is cl
that while the explicit form of the linear theory fits the dat
well for small wave numbers, consistent fits cannot be o
tained for larger wave numbers for the same length of tim
In fact, as the wave number increases, the time over wh
the fit is consistent with the data decreases.

The time at which the linear theory fails can be read o
each graph and this time can be plotted against the wa
number. This is exactly what has been done in Figs. 4 and
In Fig. 4 the data for several different quench depths a
shown while Fig. 5 shows the data for different ranges of t
interaction. Note that in Fig. 5 the wave number is scaled
the range so that the different data sets can be easily co
pared. All the data sets show the same trend; the breakdo
time for small wave number is roughly constant and the
drops off rapidly for larger wave number until it reaches
point where the CHC theory does not fit the data even at
50. That is to say that the slope predicted by linear theory
t50 is wrong for large wave number and so the nonline
terms become important there first. As we will see later, t
nonlinear terms manifest themselves as small compact

FIG. 3. Examples of the structure factor as a function of time f
these simulations. The structure factor for three values ofn are
shown. The dotted line represents a fit to CHC theory while t
solid line is a fit to the generalized linear theory. This is in units o
(kbT)/J andJ is taken as 1 in this work.
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mains in real space of either up or down spins which fo
large wave numbers become important to the structure fact
calculation, but for small wave numbers appear to cance
each other out.

It is also possible to fit the structure factor to a general
ized linear theory which includes higher order terms in the
expansion of the interaction while still being able to de-
couple the modes. In fact Hopper and Uhlmann show that fo
many common interactions the higher order terms are impo
tant @20#. Consider the dynamic equation for the structure
factor of the form

]

]t
S~kY ,t !522MA~k!S~kY ,t !12MkbT. ~3.3!

Here M is a mobility, T is the temperature, andA(k) is
called the amplification factor which if set toA(k)5
2R2k222« recovers Cahn-Hilliard-Cook theory. If this

r

e
f

FIG. 4. The breakdown time for various quench depths and a
interaction range ofR57.

FIG. 5. The breakdown time for various interaction ranges and
quench depth ofb51.5.
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56 5165MORPHOLOGY OF EARLY STAGE PHASE ORDERING
form of A(k) is plotted againstk2, the resulting graph should
show a linear relationship. In this section we show that i
A(k) is extracted from the time dependent structure facto
thenA(k) can be compared to the CHC form as well as othe
forms.

The solution to Eq.~3.3! is

S~kY ,t !5@S~kY ,0!2Sn~kY !#exp@22MSn
21~kY !t#1Sn~kY !,

Sn~kY !5kbT/A~kY !. ~3.4!

Sv(k) is interpreted as the structure factor in equilibrium
within the linear approximation; that is, when the linear
theory is a reasonably good approximation, the structure fa
tor evolves towardSv(k). Far above the critical point the
linear theory is a good approximation andSv(k) is the equi-
librium structure factor, while below the critical point the
linear theory is only a good approximation fork!1 and
short times when the order parameter is small. In the latt
case we will callSv(k) the virtual structure factor.

In Eq. ~3.4! the scattering intensity of a particular wave
vector does not depend on the amplitude of other wave ve
tors. Thus we can fit the data for each wave vector separate
to a simple function of time. All of the runs in this work are
temperature quenches fromT5` so the initial structure fac-
tor is that of a random configuration of spins,S(k,0)51.
Given these conditions we have only two fit parameters,M
andSv(k), which can be varied to minimize the residuals.

The mobilityM in Eq. ~3.4! is defined as a dimensionless
constant for Metropolis dynamics, though many investigator
@21# absorb a factorkbT making the mobility temperature
dependent. Ludwig and Park@21# predicted that the mobility
as defined in Eq.~3.3! should be 4. Figure 6 presents a plot
of the mobility vs wave number. This plot shows that the
mobility is independent of the wave number and is randoml
distributed around 4. Aftern535 the structure factor initially
grows slowly, so the ‘‘signal to noise ratio’’ is fairly large. In
order to fit to the form in Eq.~3.4! more easily, the mobility
was held fixed at 4; hence, the constancy ofM after n535

FIG. 6. The mobility as a function of wave number forR57,
b51.5.
f
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shown in Fig. 6 has no meaning other than to signal beyo
what point the mobility is fixed.

We can now study the amplification factor as a functio
of n for systems with different ranges of interactions an
quenches to different temperatures. For large enough ra
the system should be well described by mean field the
and the physics should be independent of the range. In f
as discussed above, it should be possible to rescale
lengths withR. When this is done, the wave number wi
rescale asn→Rn. If we plot the amplification factor agains
Rn for systems which have different ranges but are quench
to the same temperature, the plots should collapse onto e
other. Figure 7 shows a plot of the inverse of the virtu
structure factor as a function of (Rn)2. The data almost col-
lapse to the same line. There is a slight offset in they axis as
the range increases. From the CHC form of the amplificat
factor we see that they intercept is related to«, the differ-
ence between the quench temperature and the critical po
SinceTc varies withR @18#, the critical temperature of the
system approaches 1 from below as the range gets larger
if different systems are quenched to the same temperat
the system with the larger range will be slightly further from
the critical point.

If the CHC theory is correct, then the data plotted in Fi
7 should be linear withn2. Clearly Fig. 7 is not linear:
though it may be possible to approximateA(k) with a linear
function of n2 for small n, for larger n the amplification
must have a functional form which includes higher orders
n2. ~Note that odd powers ofn are excluded due to the
symmetry of the potential.! The reader may be concerne
that largen corresponds to length scales small enough to
on the order of the interaction range. To show that this is n
the case, the wave number which corresponds to the inte
tion range,ni5(lattice size)/R, has been marked in Fig. 7
Notice that since all lengths in this figure have been sca
with R, this point is independent of the interaction range.

To explore the form ofA(n) more carefully, we can look
at quenches to different temperatures. The amplification f
tor for different quenches is shown in Fig. 8. The data f
three different temperatures are represented by differ
symbols. As in Fig. 7, the data shown in Fig. 8 can be fit

FIG. 7. The amplification factor as a function of (Rn)2 for dif-
ferent interaction ranges. The amplification factor is unitless.
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5166 56N. A. GROSS, W. KLEIN, AND K. LUDWIG
a function that is linear inn2 for small values ofn. However,
for larger values ofn, higher orders ofn2 are needed to fit
the data. Each order introduces another parameter w
should have some physical meaning unless all the param
are related. If the parameters are related, then the CHC f
may just be the first term in a Taylor series expansion of
correct form in which all orders ofn2 are present. For large
n, A(n) appears to go to a constant value. A form who
Taylor expansion is linear inn2 and approaches a fixed valu
is the replacementn2→12exp$2R2n2%. We propose that the
amplification factor in Eq.~3.4! is approximated by

A~n!5~12exp$2R2n2%22«! ~3.5!

rather than the CHC form. This form was used to fit t
measured values ofA(n). These fits are represented by t
curves in Fig. 8. The parameters for these fits are given
Table I. It should be noted that these are exactly the par
eters which would be present in CHC theory. In fact, t
dotted lines plotted in Fig. 8 representA(n) as predicted by
CHC with the parameters given in Table I. Although it
better than the original CHC theory, the form for the amp
fication factor given in Eq.~3.5! does not correspond with
the theory for high wave numbers. A careful examination
the data shows that it is not possible to fit the low and h
wave numbers with exactly the same parameters. The
shown in Fig. 8 were only fit for the range 0,n2,1500.
These fits still deviate for largen.

The deviation of the fit in Fig. 8 may imply that the form
for A(n) given in Eq.~3.5! is still incorrect but there exists

FIG. 8. The amplification factor as a function ofn2 for various
quench depths. The amplification factor is unitless.
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true linear theory for all wave numbers. One way to test t
is to collect better statistics so that the noise in the scatte
amplitude for higher wave numbers is smaller, and then
plots of (d/dt)S(k,t) vs S(k,t) to see if these higher wav
numbers do indeed obey a linear theory. Note that beca
the potential used does not have circular symmetry, for th
higher wave numbers the circular average used above is
a good approximation. The scattering amplitude is no lon
a function of the magnitude of the wave vector, and ea
direction must be considered separately. Evidence for
other form ofSn will be given in the next section.

The results of the (d/dt)S(k,t) vs S(k,t) may also show
that no form of linear theory is valid for large wave numbe
that is, all forms fail in a way similar to that shown for th
CHC theory. Later in this paper other evidence for the failu
of the linear theory at small length scales will be present

Although the form ofA(n) given in Eq.~3.5! may not be
correct, it fits the data well enough to be suggestive. Fr
Eq. ~3.3! we see thatA(n) is the Fourier transform of the
differential operator in front ofS(k,t) in the dynamical equa-
tion. From Eq.~3.3! we see that this is also the operator
front of f in the Langevin equation and it is related to th
functional derivative of the free energy. From above we s
that higher orders ofn2 are important, indeed we may nee
all orders for a complete linear theory. In real space,
Langevin equation will then have to include all even deriv
tives off in order to be correct and the free energy must a
include all even derivatives. If the true free energy includ
higher order derivatives, then we should see their effec
equilibrium measurements. As discussed earlier,Sn(k)
would be the structure factor if the system were in equil
rium above the critical point. The relation toA(k) is given in
Eq. ~3.4! and so the equilibrium structure factor has the fo

Sn~n!5
kbT

~12exp$2R2n2%12«!
. ~3.6!

Figure 9 shows the inverse of the measured structure fa
for systems in equilibrium at the specified inverse tempe
ture above the critical point. As with Fig. 7, the data sets
Fig. 9 are plotted againstn2. Again we see that this is not th
linear relation predicted by the Ornstein-Zernicke form. T
fits here are of the form given in Eq.~3.6!. The fit parameters
are given in Table II. Since these are equilibrium data, th
is no dependence on dynamics. This form should only
pend on the free energy. As discussed above, the free en
must include higher order derivatives.

Grewe and Klein have already derivedS(k) for the po-
tential used in this work@22#. The potential used by Grew
and Klein is known as the Kac potential and is of the fo
ers of
TABLE I. Parameters for fitting to the modified linear theory. Numbers in square brackets are pow
10.

R b 2« R2 b

7 1.2 0.0903~0.0026! 0.001 11 ~2.1@25#! 1.49 ~0.014!
7 1.5 0.1891~0.0058! 0.001 08 ~3.1@25#! 1.773~0.022!
7 2.0 0.24 ~0.013! 0.000 94 ~4.7@25#! 2.139~0.039!

10 1.5 0.2226~0.0097! 0.002 506 ~9.3 @25#! 1.647~0.02!
15 1.5 0.255~0.0084! 0.005 45 ~0.000 14! 1.722~0.015!
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56 5167MORPHOLOGY OF EARLY STAGE PHASE ORDERING
V(x)5gdf(gx). For our workg51/R andf is a step func-
tion in the form of a square as described in Sec. II. Notic
that for this work the factor ofgd51/q was initially associ-
ated with the inverse temperature but was scaled away.
then reappears in the potential. Grewe and Klein found tha
the inverse of the structure factor has the form

@S~kY !#21512brL̃~kY !, ~3.7!

where b is the inverse temperature,r is the density of up

spins, andL̃(kY ) is the Fourier transform of the potential. In

this work L̃(kY ) is

L̃~kY !5Fsin kxR

kxR

sin kyR

kyR
G22«. ~3.8!

The last term in Eq.~3.8! comes from excluding the interac-
tion of each spin with itself. Expanding Eq.~3.7! in a power
series we can recover the Ornstein-Zernicke form for sma
wave vectors. Because of poor statistics and circularly ave
aged data it was not possible to compare the simulation r
sults directly with the form of the structure factor derived by
Grewe and Klein; however, the first few terms of the expan

sion of L̃(kY ) are consistent with the first few terms of the
proposed structure factor.

FIG. 9. Equilibrium structure factor plotted vsn2 for various
quench depths. This is in units of (kbT)/J.

TABLE II. Parameters for equilibrium structure factors. Num-
bers in square brackets are powers of 10.

R b 2« R2 b

7 0.6 0.59~0.016! 0.001 173~6.1 @5#! 0.711~0.013!
7 0.9 0.1013~0.0059! 0.001 284~3.4 @5#! 1.074~0.01!
7 1.0 0.0116~0.004! 0.001 313~2.4 @5#! 1.1888~0.0077!
e
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IV. USING CLUSTERS
TO EXPLORE THE EARLY TIME MORPHOLOGY

It has been shown above that the linear theory can
extended by including all orders of the interaction expansi
It is also argued above and in a previous paper that lin
theory, as well as the extension, fail first not at large len
scales, as would be concluded from the fact thatk50 is the
fastest growing mode, but at small length scales. The rem
der of this paper will be devoted to studying the structu
which develop on small length scales and connecting
existence and growth of these domains to the breakdow
linear theory. These structures will be explored using a cl
ter mapping defined by Coniglio and Klein@23#; however,
we shall first explore the cluster distribution which is prese
in the system at the time of the quench.

We have assumed throughout this work that the star
configuration is a lattice of random spins which correspon
to a system that is prepared at very high temperatu
Coniglio and Klein have shown that for a spin configurati
which corresponds to a system in equilibrium there is a p
colation transition at the critical temperature and that an
finite cluster which corresponds to the majority phase
present. In this section we will use simulations to show th
for a mean field system with arandom distributionof spins,
a percolation transition also occurs for the bond probabi
pb512e22b with b set to the inverse of the thermal critica
temperature. In the mean field case there will be two infin
clusters, one for the up spins and one for the down spin

In the mean field limit we can argue that a percolati
transition exists for a random distribution of spins. If ea
spin interacts withq other spins then asq goes to infinity,
the model approaches the mean field limit. We rescale
temperatures with respect toq so thatb→b/q so that the
rescaled thermal transition temperature corresponds tobc
51. For largeq the bond probability defined by Coniglio
and Klein approachespb52 b/q. For a random configura
tion of spins only half of the spins (q/2) which interact with
a particular spin are in the same direction as that spin. Si
for mean field percolation, the critical bond probability is th
inverse of the number of possible bonds,pc52/q, then with
a random configuration of spins and the temperature se
that of the thermal transition, the Coniglio-Klein bond pro
ability corresponds to the critical bond probability and
there exists a percolation transition.

It is possible to test these arguments via Monte Ca
simulations where the spin configuration is fixed, but ma
bond configurations are sampled. The percentage of b
configurations which contained spanning clusters can
plotted againstb. Stauffer and Aharony argue that this fun
tion, which they callP, is only a function ofb and the lattice
sizeL @24#. For an infinite lattice,P is a step function with
the step atbc , while for finite latticesP increases smoothly
from zero belowbc , to unity above it. This is shown in Fig
10 whereP is plotted againstb for various values of the
lattice size. The data shown are for an interaction rangR
57. L varies from 128 to 512.

Stauffer and Aharony@24# suggest the form forP is given
by

P5F@~b2bc!L
1/n#5C1f@~b2bc!L

1/v#, ~4.1!
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5168 56N. A. GROSS, W. KLEIN, AND K. LUDWIG
wheref is an odd function aroundbc and approaches2C
for small b and (12C) for largeb. C is independent of the
lattice sizeL so atb5bc , P5C for any lattice size; thus at
b5bc the curves forP intersect. This can be used to find
bc . We see from Fig. 10 thatbc for this range of interaction
is between 1.25 and 1.28.

Using the method described above, the percolation poi
was found for interaction ranges fromR51 to 15. To ex-
plore the scaling of the percolation transition the invers
temperature at which the transition occurs.bp , can be plot-
ted againstq. We show this in Fig. 11, where we compare
the scaling of the percolation transition to that of the therma
transition calculated by Domb and Dalton@18#. Both the

FIG. 10. P vs the inverse temperatureb for various lattice sizes.
These curves intersect at the critical temperature.

FIG. 11. Scaling of transition temperature with coordination
number.
nt

e

l

lines shown are fits to the data using the Domb and Da
form. The parameters for the fit of the percolation data
G520.606(0.015) andA57.27(0.58). The slope is consis
tent with that of the slope of the thermal problem,G5
20.666(0.068).

From these results we see that the critical temperature
the thermal problem and the critical temperature for perco
tion on a random lattice both scale in the same way with
coordination number, although the prefactor is differe
Thus, for a sufficiently deep instantaneous quench below
critical point, initially there are two infinite clusters whic
are uniform over the lattice. If the system is quenched t
point below the thermal critical point but above the perco
tion transition no infinite clusters are initially present. Eve
tually, as the system evolves, only the equilibrium infin
cluster appears. The temperature region in which this occ
narrows as the interaction range increases~note that the scale
in Fig. 11 is logarithmic! so that in the mean field limit, for
any quench to a temperature below the critical point, t
infinite clusters are present. We will see below that the t
infinite clusters which appear can be used to follow the m
phology of the system as it evolves. Eventually one of th
infinite clusters will have to dissolve while the other fills
to become the equilibrium infinite cluster which correspon
to the magnetization. This suggests that there exists a ‘‘m
field’’ dynamics whose morphology is inherently differe
from dynamics of systems which are nonmean field. T
dynamics of this morphology is what we will explore in th
rest of this paper

To follow the evolution of the cluster structure, a sing
system is prepared at infinite temperature and allowed
evolve. At various time intervals the spin configuration w
be frozen and a number of bond configurations will
sampled. Using the measured cluster properties we will
serve the morphology of the system as a function of time.
the system evolves, structure can be identified by view
the enhancement of the probability of belonging to the in
nite cluster; that is, by visualizing the differenceP`(x,t)
2^P`(x,0)&, whereP`(x,t) is the probability that a spin a
positionx belongs to the infinite cluster at timet. Since the
mapping identifiesP` with the magnetization, and the coars
grained magnetization is the order parameter for this pr
lem, then the spatial fluctuations and evolution ofP` repre-
sent the spatial fluctuation and evolution of the order para
eter. Since the initial configuration is a random unifor
distribution which exhibits both an up and a down infini
cluster, these infinite clusters cancel each other, resultin
zero magnetization. This situation is much like that of
‘‘false vacuum.’’

We will use the enhancements ofP` over its initial value
to identify primitive domains in the system. Given the abo
arguments, we construct these enhanced regions in the
lowing manner.

~1! The simulation is frozen at a particular time step, and
that particular spin configuration many configurations
the bonds are sampled. For each bond configuration
noted which sites belong to the spanning cluster.

~2! P`(x,t) is estimated for each site by dividing the num
ber of times that site belongs to the infinite cluster by t
number of bond configurations sampled.
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FIG. 12. ~Color! Visual representations of the enhancements of spanning cluster. The figures on the left show the spin configu
0.5 MCS~top!, 1.0 MCS~middle!, and 1.5 MCS~bottom!. Those on the right are a visualization of the enhancement of the infinite clu
using the procedure described in the text.
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em
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~3! The average value ofP` for the initial random configu-
ration is calculated. For this configuration,P` is nearly
uniform over the system, having a small standard dev
tion. This standard deviation should go to zero as
range of interaction goes to infinity, i.e., as the syst
-
e

gets closer to the mean field limit. The valuePbg
5^P`(x,0)&13s@P`(x,0)# is used as a backgroun
subtraction asP`(x,t) evolves. Herê•••& is the average
over position ands@•••# is the standard deviation ove
position.
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5170 56N. A. GROSS, W. KLEIN, AND K. LUDWIG
~4! At each time stepP`(x,t)2Pbg is calculated. If this is
less than zero, it is set to zero.

The visual realization of the procedure outlined above
shown in Fig. 12. In the third step above the value of thre
times the standard deviation was chosen so that no enhan
ment appears for the initial state. As the range is increas
the standard deviation will go to zero so that this cutoff is n
needed in the mean field limit.

Now each site has associated with it a measure of ho
connected it is to one of the two spanning clusters a
whether that connectivity has increased since the quench.
identify domains, we consider all spins of the same sign f
which the measure is nonzero and which are within one i
teraction length of each other to be part of the same doma
Having done this we can identify the mass, center of ma
and radius of gyration of each domain. We will explore th
domain profile in the next section and we will show tha
these domains have a significant magnetization as compa
to the equilibrium magnetization, and that the domain boun
aries are sharp. These domains were predicted in Ref.@15#.

The domains shown in Fig. 12 appear to have distin
edges. To verify that this is actually the case the spin co
figuration itself can be analyzed. Using the center of mass
one of the domains the domain profile is constructed fro
the spin configuration by calculating the integrated magne
zation inside a disk of a particular radius centered around t
center of mass of a domain. From a plot of this integrate
magnetization vs the radius the domain profile can be d
duced. For the rest of the paper we will refer to such a plot
the domain profile. Figure 13 is just such a plot and show
the domain profile for a specific domain plotted at successi
time steps. The dark solid line is a fit of the latest doma
profile to a parabola. The profile of the domain at each tim
step exhibits similar behavior: that is, at each time step t
integrated magnetization increases as the square of the r
up to a specific radius, and then the integrated magnetizat
is a constant. This signifies that the interiors of these d
mains have a uniform density of up spins which is great

FIG. 13. The integrated magnetization of an enhance domain
a function of the distance from its center. This is simply the diffe
ence between the number of up spins and the number of down sp
inside a radiusr .
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than 50%, while the exterior still has a random distribution
of up and down spins with a definite interface between inte
rior and exterior. The fitted line shows that the density of up
spins inside these domains is roughly half the equilibrium
density, therefore in the interior of the droplets the order
parameter is not small, so the evolution of the order param
eter in the interior of these droplets should not obey a linea
theory.

Figure 14 shows the profile of another domain which is
adjacent to the domain whose profile is given in Fig. 13
Notice that for large radius both profiles start to decrease
The two domains shown are of opposite sign, and the de
crease at larger is the contribution of the other domain to the
sum. In the case of Fig. 14 we see the effects of even a thir
domain, this time of the same sign, causing the integrate
magnetization to start increasing after it has started to de
crease. This is confirmed by detailed analysis of the domai
configurations generated by the procedure described abov

At a time slightly greater than one MCS these domains
begin to interact. Domains of the same sign will start to
coalesce, while domains of different signs form phase
boundaries. The coalescence of domains can be seen by pl
ting the number of domains as a function of time. Figure 15
shows this effect. Here we see three sets of data for differen
interaction ranges all run atb51.5. The scaled density is the
total number of domains divided by the volume of the sys-
tem measured in interaction volumes~that is, the volume of
the system divided by the volume of an interaction region!.
The first thing to note is that the cluster density scales with
the interaction range in the obvious way, that is, once th
volume is rescaled the density is independent of range. Up t
one MCS the number of domains is increasing as new do
mains form. At one MCS the domains start to interact and
coalesce, though new domains must also be forming becau
the domain density~the number of domains per unit volume!
stays constant for a short time. The domain density begins t
decrease after 1.5 MCS, signifying that no new domains ar
forming; any fluctuations that do happen occur either inside
of or within one interaction range of a domain which is al-
ready present. The domain density decreases after 1.5 MC
as the domains continue to coalesce.

as
-
ins

FIG. 14. The integrated magnetization of another domain in the
vicinity of the one shown in Fig. 13.
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56 5171MORPHOLOGY OF EARLY STAGE PHASE ORDERING
It is possible to predict the growth rate of the doma
density for the early times using arguments first proposed
Ray, Tamayo, and Klein@25#. These authors show that, for a
mean field system in equilibrium, the time dependence of t
magnetization can be modeled as a random walk in mag
tization space. This argument should apply for regions whi
have not reached threshold, that is, for regions which cont
no domains. Regions which have reached threshold are
longer doing an unbiased random walk and are trapped in
well into which they have fallen. We are able then to calc
late the percentage of regions which have passed the thre
old at a given time.

In the continuum limit, a random walk can be describe
by a diffusion equation. To model the case in question, a
sorbing boundary conditions will be used to account for th
regions which have exited the top of the hill and are n
longer performing a random walk. We can solve the diffu
sion equation with these conditions along with the approp
ate initial conditions and find the percentage of domai
which are no longer inside the boundaries as a function
time. If P(m,t) is the percentage of interaction region wit
magnetizationm at time t then the diffusion equation is

d

dt
P~m,t !5

d2

dm2 P~m,t !. ~4.2!

For absorbing boundaries at magnetization at6M , the solu-
tion to Eq.~4.2! is

P~m,t !5(
n

An cosS pm~2n11!

2M D
3expF2tS pm~2n11!

2M D 2G . ~4.3!

The initial conditions will set the value ofAn . Initially the
magnetization of each interaction range is distributed in
normal Gaussian distribution. Note that the probability that
spin belongs to the infinite cluster is related to the number

FIG. 15. Scaled domain density as a function of time from di
ferent interaction ranges.
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interacting neighbors that spin has in the same direction
the spin. So the initial distribution of interaction region ma
netizations is

P~m,0!5
1

~2ps!1/2 expS 2m2

2s D , ~4.4!

wheres is the spread of the initial distribution. The coeffi
cientsAn then become

An5
1

2s
expF22sS p~2n11!

2M D 2G , ~4.5!

and the probability distribution becomes

P~m,t !5(
n

1

2s
expF2~2s1t !S pm2n11

2M D 2G
3cosS pm~2n11!

2M D . ~4.6!

We want to know the percentage of domains which ha
passed through the boundaries. This can be found from
percentage of domains which are still contained in
boundaries.

E
2M

M

P~m,t !dm5
4M

2sp (
n

1

~2n11!
expF2~2s1t !

3S p2n11

2M D 2G . ~4.7!

The number of domains that have passed the threshold
is D(t)512*2L

L P(m,t). Since the argument of the expo
nential forn51 is nearly an order of magnitude bigger tha
that for n50, we can drop all the higher order terms a
only look at then50 term in this sum. Since we are onl
interested in short times, we expand this term in a pow
series and look at the leading orders.

D~ t !'12
4M

2sp F12S p

2M D 2

~2s1t !G . ~4.8!

We see in Eq.~4.8! that for short times the number of do
mains that will be above threshold grows linearly with tim
Looking at Fig. 15 this is exactly what we observe.

V. SOME CONCLUDING REMARKS

The aim of the work presented above was to underst
the breakdown of the linear theory, which at best descri
the early stage continuous ordering and spinodal decomp
tion. A simple analysis of the spatial structures predicted
the CHC theory shows that compact domains will form
small length scales and the order parameter inside these
mains will quickly grow so that the linear theory will n
longer be valid in the interior of these domains. The tim
associated with the failure of the linear theory within the
domains scales as ln(R)/« consistent with the predictions o
Binder @9#. Our simulations have confirmed part of this pi
ture, however, there are subtle but important differences.
important to note that the simple analysis of the CHC eq

-
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5172 56N. A. GROSS, W. KLEIN, AND K. LUDWIG
tion, as well as Binder’s construction of the Ginzburg cri
rion, are consistency checks and do not rule out that the C
theory will fail on shorter time scales.

In fact, we have shown both here and in a previous w
@13# that the linear theory fails first on short length scal
We did this by comparing the structure factor measured fr
Ising model simulations to the structure factor predicted
linear theory. We presented data which confirmed that
breakdown time was a function of the wave number a
decreased with higher wave numbers. This was true e
when we included the details of the interaction energy i
generalized linear theory. However, the scaling of the bre
down time withR and« was not confirmed.

It is also interesting to note that the system appears
‘‘decide’’which well it will go into when the domains per
colate. In every case when the up domains percolate the
tem goes into the up magnetization well. The same proc
occurs with the opposite sign when the down spin doma
percolate. We have also tested this by taking a system
completion and noting which well it has chosen. We th
rerun the system with the same initial conditions and sa
noise field~same random number seed!. At several time in-
tervals we stop the evolution, make several identical cop
and restart each copy with different noise. If the vario
copies are made before the domains have coalesced then
of the copies will fall into the up well while the other ha
will fall into the down. On the other hand, if we perform th
process after domain coalescence, all the copies will fall i
the same well. Note that domain coalescence occurs ear
the evolution of the system.

In the second half of this work we mapped the Isi
r,
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model onto a percolation model to identify growing domai
of up and down spins which are surrounded by a sea
randomly distributed spins. The random distribution is e
pected since the system was equilibrated atT` prior to the
quench. The order parameter in the interior of these dom
is quite large, comparable with the equilibrium value, and
a linearized theory should no longer be valid in the interi
The order parameter in the exterior of these domains is
small and so the linear theory should still be valid on leng
scales larger than the average domain size. We found tha
size of the domains appears to coincide with the length s
at which linear theory has failed and we have shown in
previous publication@13# that the linear theory fails on al
length scales when the domains of either the up or do
spins percolate and hence span the system. The differ
between this result and the consistency checks discu
above is that any growth associated with the instability
pears on a time scale of«21 independent of R. The R de-
pendence appears in the time scale associated with the
colation of domains. Since the breakdown of linear theo
has been connected to the growth of compact isolated
mains, any nonlinear theory will have to account for the
This is not done for theories such as those of Langer, Bar
and Miller @7# or Billotet and Binder@8#.
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